

Basic Function Block

Internal storage for

p Internal storage for
input events and data ge fe

output events and data

Execution Control Chart

/N
g =ing

1
1
1
v

-

—>| Algofrjthhs —> A—
4y V1
Internal
variables

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 2

Encapsulation of legacy code

- & . Timer
- SET a = [_:_ START “___I
i Evenl Event Trans 1
RESET |nput Outpui J
Iz | | STEP1 | [acion
N s
- Ty in_—: 2
Execution Control Chart (" sterz)T adin |
ol Trans 3
STER3 ' [Action |

Internal

variables
\\
\ ALGORITHM COUNT UP
\ \\ LEDO:=NOT LEDO;

B
S IF NOT LEDO THEN
\ LED1:=NOT LED1;
s IF NOT LED1 THEN
] LEDZ :=NOT LED2;
IF NOT LED2 THEN

END_IF;
END IF;
END_IF;
END_ALGORITHM;

LED3:=NOT LED3;

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007

Slide 3

EVENT
EVENT

Execution Control Chart

=

1]

BOOL

L

INT

[

IMIT IMITO S EVENT
RED —|— RES1 B—— EVENT
RESZ B EVENT
Sample
al o0 HE—8—BooL
PARAM RESULT —EHE2 INT
transition INITIALIZE INT [inmo |
1
L. INIT & QI :

ECC initial assignment of an

State

output event variable

START

1
RED& (PARAM=2) REQ& { PARAM=1) 1

transition | {
condition

@ ALG2? | RES? |

@ ALG1 |RES1 |

calls of
algorithms

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007

Slide 4

Execution model — event driven

_Né EVENT INIT INITO EVENT
_N+ EVENT REQ CNF EVENT
— —
LOGIC
@ BOOL Ql RES1 BOOL
2 INT PARAMS RES2 BOOL
BOOL A
BOOL l B
BOOL C
SHUT| CNF
:
) ! ACTIVE:=0
1 | RES1:=0
RES2:=NOT B
| START
1 / \ ‘\
/ \ \1 : __________________
INIT | INITO MAIN [CNF
:
1
: ACTIVE:=1
“-»| RES1:=0
RES2:=0

A B RES1
11] (
4 4 \
C
—)/[—
A B RES2
] 11 (
4 4 \
RES1

——

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007

Slide 5

Execution model

« Syntax of transition conditions:
 Event | Expression over Data | Event & Expression over Data

* No flip-flop memory for input event variables is required

* This simplifies the ECC interpretation rules making ECC
very similar to Harel’s State Charts

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 6

Execution Sequence

« Step 1: The input variable values relevant to the input
event are made available.

- Step 2: Theinput event occurs, the execution control
of the function block is triggered

_ | _» Execution Control|_ _ |
@ Function ’- Step3: The execution control function evaluates the
ECC and notifies the scheduling function to schedule

algorithm for execution

« Step 4: Algorithm execution begins.

« Step 5: The algorithm completes the establishment of
values for the output variables associated with the
@ = -» event output by the WITH qualifier

@.. _op Algorithm
A

|

|

|

|

« Step 6: Theresource scheduling function is notified
that algorithm execution has ended.

A
|
|
|
|
|
|
|
|

T
|
I
I
|
|

. : | . Step 7: The scheduling function invokes the execution
@ @ @ @ control function.

) /,,' V/ - ., <+ Step 8: The execution control function signals event at
e e Z the event output.
Scheduling Functio

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 7

ECC interpretation example

1. Allthe transition conditions going
out of the current ECC state are
evaluated.

2. If no transition is enabled, then the
procedure ends.

3. If one or several state transitions
are enabled (i.e. if the
corresponding conditions evaluated

transition to TRUE), a single state transition
v, takes place*.
B R G 4. The current state is substituted by

assignment of an the f0||0W|ng one.

state output event variable

5. The algorithms associated with the
Y state new current state will be scheduled
t REQ& (PARAM=2) REQ& (PARAM=1) 1 fOI’ executlon.
L 6. Th;a_fexes[:#tion control fL;]ncdticl)_n
notifies the resource schedulin
(wooe)-{ALe? TResT (wooe1) (AT TrEsi function to schedule an algoritt?m
calls of for execution.

algorithms

* The order in which the transition
conditions are evaluated
corresponds to the order in which
they are declared following the
textual syntax

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 8

Example

L
EWVENT EWVENT
REAL REAL
REAL

START |M—1

REQ—W

REQ

REL

CHF

ALGORITHM REQ IN ST

OUT := (X-Y)*(X+Y);

END

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007

Slide 9

Summary

« A Basic Function Block is a platform-independent abstraction of a
software component that is adjusted for applications in
measurement and control systems.

« The standard implies separation of the functions, implemented
by algorithms, from the execution control. The algorithms
encapsulated in a function block can be programmed in different
programming languages.

 The execution of function blocks is event-driven. This means
that algorithms are executed only if an input event activates the

block in contrast to the cyclically scanned execution of programs in
IEC 61131.

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 10

Summary (continued)

 The source of events can be other function blocks. Some of
them may encapsulate interfaces to the environment (controlled
process, communication networks, hardware of a particular
computational device).

e The execution function of a Basic Function Block is defined in
aform of a state machine that is available for documentation and
specification purposes even if the source code of algorithms is
hidden.

 The function block abstracts from a physical platform (the
resource) where it is located on. This means that the specification
of the function block can be done without any knowledge of the
particular hardware on which it will be later executed.

IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, V. Vyatkin, © 2007 Slide 11

