
Lecture 7: Basic Function BlocksLecture 7: Basic Function Blocks

IEC 61499 Function Blocks IEC 61499 Function Blocks
for Embedded and Distributed for Embedded and Distributed
Control Systems DesignControl Systems Design

Valeriy Vyatkin © 2007Valeriy Vyatkin © 2007

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 2

Basic Function BlockBasic Function Block

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 3

Encapsulation of legacy codeEncapsulation of legacy code

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 4

Execution Control ChartExecution Control Chart

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 5

Execution model Execution model –– event drivenevent driven

RES1
RES2

LOGIC

C
B
A

CNFREQ
INITO

PARAMS
QI

INIT

INT
BOOL

EVENT

BOOL

BOOL

EVENT

BOOL

EVENT
EVENT

BOOL

BOOL

START

REQ&(PARAMS=1)&ACTIVE

1

CNFINIT

INIT

1

INIT MAININITO MAIN

CNFSHUT SHUT

REQ & (PARAMS=2)OR(QI=0)
1

ACTIVE:=1
RES1:=0
RES2:=0

] [] [

]/[

A B

C
()

RES1

] [] [

]/[

A B

RES1
()

RES2

ACTIVE:=0
RES1:=0
RES2:=NOT B

1
1
2
0

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 6

Execution modelExecution model

• Syntax of transition conditions:
• Event | Expression over Data | Event & Expression over Data

• No flip-flop memory for input event variables is required
• This simplifies the ECC interpretation rules making ECC

very similar to Harel’s State Charts

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 7

Execution SequenceExecution Sequence

• Step 1: The input variable values relevant to the input
event are made available.

• Step 2: The input event occurs, the execution control
of the function block is triggered

• Step3: The execution control function evaluates the
ECC and notifies the scheduling function to schedule
algorithm for execution

• Step 4: Algorithm execution begins.

• Step 5: The algorithm completes the establishment of
values for the output variables associated with the
event output by the WITH qualifier

• Step 6: The resource scheduling function is notified
that algorithm execution has ended.

• Step 7: The scheduling function invokes the execution
control function.

• Step 8: The execution control function signals event at
the event output.

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 8

ECC interpretation exampleECC interpretation example

1. All the transition conditions going
out of the current ECC state are
evaluated.

2. If no transition is enabled, then the
procedure ends.

3. If one or several state transitions
are enabled (i.e. if the
corresponding conditions evaluated
to TRUE), a single state transition
takes place*.

4. The current state is substituted by
the following one.

5. The algorithms associated with the
new current state will be scheduled
for execution.

6. The execution control function
notifies the resource scheduling
function to schedule an algorithm
for execution.

* The order in which the transition
conditions are evaluated
corresponds to the order in which
they are declared following the
textual syntax

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007 Slide 9

ExampleExample

ALGORITHM REQ IN ST
OUT := (X-Y)*(X+Y);

END

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007

SummarySummary

• A Basic Function Block is a platform-independent abstraction of a
software component that is adjusted for applications in
measurement and control systems.

• The standard implies separation of the functions, implemented
by algorithms, from the execution control. The algorithms
encapsulated in a function block can be programmed in different
programming languages.

• The execution of function blocks is event-driven. This means
that algorithms are executed only if an input event activates the
block in contrast to the cyclically scanned execution of programs in
IEC 61131.

Slide 10

IEC 61499 Function Blocks for Embedded and Distributed Control Systems DesignIEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, Chapter 7, , Chapter 7, V. Vyatkin, © 2007

Summary (continued)Summary (continued)

• The source of events can be other function blocks. Some of
them may encapsulate interfaces to the environment (controlled
process, communication networks, hardware of a particular
computational device).

• The execution function of a Basic Function Block is defined in
a form of a state machine that is available for documentation and
specification purposes even if the source code of algorithms is
hidden.

• The function block abstracts from a physical platform (the
resource) where it is located on. This means that the specification
of the function block can be done without any knowledge of the
particular hardware on which it will be later executed.

Slide 11

